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We discuss how cybernetic principles of feedback control, used to explain
sensorimotor behavior, can be extended to provide a foundation for under-
standing cognition. In particular, we describe behavior as parallel processes of
competition and selection among potential action opportunities (‘affordances’)
expressed at multiple levels of abstraction. Adaptive selection among currently
available affordances is biased not only by predictions of their immediate
outcomes and payoffs but also by predictions of what new affordances they
will make available. This allows animals to purposively create new affordances
that they can later exploit to achieve high-level goals, resulting in intentional
action that links across multiple levels of control. Finally, we discuss how
such a ‘hierarchical affordance competition’ process can be mapped to brain
structure.

Human Cognition from the Perspective of Feedback Control
Cognitive science is defined as the study of the human mind, and its fundamental tenet is that
‘thinking can be understood in terms of the representational structures in the mind and
computational procedures that operate on those structures’ [1]. This definition places cognition
between the perceptual processes that provide its input and the motor processes that execute
its output – sketching the shape of the serial sense–think–act model of behavior that has
dominated psychological theories for more than 50 years. However, throughout that time,
an alternative view has existed, proposing that the brain is a feedback control system
(see Glossary) [2–5] whose primary goal is not to understand the world, but to guide interaction
with the world. A feedback control system is one in which outputs are generated so as to
control some variable whose value is measured via input. In the case of behavior, actions are
performed to keep the animal in a desirable state (satiated, safe, etc.) and perceptions are
used to evaluate that state [4,6]. In this opinion article, we discuss how that feedback control
view of behavior can be extended to go beyond simple sensorimotor control, and how it can
provide a conceptual foundation for understanding human cognition that better aligns with
neurophysiological data than classic serial models.

Similar to other biological processes (e.g., thermoregulation), behavior is a feedback control
process – we take actions so as to influence our state in the world [6,7]. Although overt behavior
extends beyond the skin, it is nevertheless functionally organized like other biological feedback
processes: it relies on predictable causal relationships between actions and outcomes
(approach food ! make food obtainable) and is self-regulating (eat food ! satiate hunger/
deplete food).

Trends
Traditional assumptions of cognitive
psychology are increasingly questioned
by neurophysiology, casting doubt on
the classic framework of serial informa-
tion processing.

For over 100 years there has existed an
alternative framework, which describes
behavior as a control system. Although
originally applied to simple actions, it is
increasingly being extended to address
more sophisticated behavior, including
intentional action.

The brain's ability to predict the conse-
quences of actions enables it to link
across levels of abstraction, and to bias
immediate actions by the predicted long-
term opportunities they make possible –

hence supporting intentional action.

The organization of the brain, including
the cerebral cortex, is increasingly
viewed in terms of the species-typical
activities that it evolved to support, as
opposed to the hypothetical modules
of cognitive psychology theory.
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Glossary
Active perception: in ecological
psychology (and beyond), perception
is active in many senses. First,
cognitive processing does not start
with a passive stimulus-processing
phase, but with an action that
produces the next sensed stimulus
(or an expectation to be met). In turn,
the stimulus is used within the
feedback loop to guide action toward
its goal [72]. Second, objects are
recognized through the actions we
(can) make on them, see Affordance.
Third, active perception refers to
strategies of sensor or eye movement
control that permit, for example, to
implement the right stimuli for the
current action context [73] or
hypothesis testing [74].
Affordance: a potential action that is
made possible to an agent by the
environment around it [72]. While
affordances are defined with respect
to an agent's individual capabilities
(e.g., a tree branch might have a
‘walkability’ affordance for a monkey,
not necessarily for a sedentary man),
they are objective in the sense that
they do not depend on whether the
agent perceives them, attends to
them, or chooses to act on them,
and can be recognized by anyone
familiar with the agent's motor
repertoire.
Control of perception: in analogy
with homeostatic loops, behavior can
be described as the ‘control of
perception’ [4]: what is controlled is a
perceptual state (e.g., when driving,
the indicator of the speedometer is
kept stable on ‘100 kph’), whereas
actions (e.g., press brake versus gas
pedal) are contextually selected to
keep it in the desired range,
counteracting ‘disturbances’ (e.g.,
hills).
Control system: a system that is
able to keep one (or more) controlled
variable(s) within a given range, to
match a ‘reference signal’ (or ‘set
point’) despite disturbances. Any
mismatch between the reference
signal and the perceptual (feedback)
signal represents an error that the
controller seeks to minimize by taking
action – as in the case of a
thermostat that opens or closes the
furnace to keep room temperature
(the controlled variable) within a
prespecified range.
Feedback signal: a signal used to
update a control system's estimate of
the state of the controlled variable. It

The basic framework of feedback control is widely recognized in studies of autonomic physiol-
ogy [8], sensorimotor control [9–11], and natural animal behavior [12], but largely absent from
theories of how human cognition operates. Here, we argue that this is an oversight and that even
human cognition is best understood within the context of the feedback control theoretical
principles that govern all biological systems. In this perspective, we take adaptive action control –

and the problems faced by situated agents who pursue their goals in dynamic (yet structured)
environments – as a central paradigm to understand human cognition.

Some biologically grounded models of embodied action and cognition, such as the ‘affordance
competition hypothesis’ [13], ‘active inference’ [14], and others [15–17], incorporate control
theoretical principles (Figure 1). However, these proposals have been mostly applied to simple
scenarios and cognitive tasks that do not fully engage higher cognitive processes. Here, we
discuss how these models can be extended beyond simple sensorimotor behavior to address
the domain of intentional action and higher cognitive skills, while retaining important principles
of feedback control at their core.

Hierarchical Affordance Competition
The affordance competition hypothesis [13,18,32] suggests that during interactive behavior, the
brain simultaneously specifies the set of desirable actions currently available in its environment
(‘affordances’), and decides what to do through a competition between representations of these
actions, biased by the desirability of their predicted outcomes. Once a given action is selected, it
is executed through continuous feedback control, using sensory information from the environ-
ment as well as internal predictions of expected feedback to fine-tune and update the ongoing
action until completion. Furthermore, because alternative potential actions continue to be
processed even during ongoing activity, the hypothesis proposes how animals can rapidly
switch actions if the need or opportunity arises.

Importantly, in this view, potential actions are not distinct categorical entities, such as the button
presses of a classical psychological experiment, but regions within a continuous landscape of
actions – akin to a ‘desirability density function’ across the space of movement parameters
(Figure 2A) [19]. That landscape is defined by the geometry of the external world and changed
continuously by events in the environment and the animal's own actions. When choices emerge
as distinct regions of desirable actions, adaptive behavior relies on the animal's ability to predict
the future consequences of selecting one over another.

While affordance competition was initially described as a theory of how animals select between
concrete and immediately available actions, it can be extended toward a more general theory of
decisions made on multiple levels of abstraction [20]. Here, we discuss how such a ‘hierarchical
affordance competition’ can address the domain of intentional action. Key to this proposal is the
recognition that the brain's ability to predict the consequences of actions enables it to link across
levels of abstraction, and to bias immediate actions by the predicted long-term opportunities
they make possible.

According to this hypothesis, intentional action can be conceptualized as a (purposive) naviga-
tion in an ‘affordance landscape’: a temporally extended space of possible affordances, which
changes over time due to events in the environment but also – importantly – due to the agent's
own actions. The key for extending the simple competition among affordances toward inten-
tional action is to recognize that brains are continuously engaged in generating predictions (e.g.,
about future opportunities) rather than just reacting to already available affordances [21–23].
Consider the example depicted in Figure 2B: a monkey is sitting on a tree branch, within reach
of a small berry. This situation presents the monkey with the possible actions (among others) of
reaching for the berry or walking outward on the tree branch. Because the monkey can predict
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that reaching for the berry has the desirable benefit of satisfying hunger, that action will be
favored in the competition if nothing else (internal, e.g., satiety; or external, e.g., a predator)
enters the picture. However, advanced brains can go beyond such simple choices. In particular,
the monkey can predict that walking out on the tree branch will result in putting an apple within
reach – a prediction from available affordances (a ‘walkable’ tree branch) to the expected
affordances that those actions make available (a ‘reachable’ apple). Because reaching for an
apple is highly desirable, this predicted affordance can now be linked to the current situation via a
‘top-down’ bias that favors the selection of walking over reaching for the berry.

Decision-Making within a Hierarchy of Control Loops
This idea of top-down biasing of decisions can be formalized by casting affordance competition
as a hierarchy of control loops [4,7], with multiple competitions occurring in parallel at different
hierarchical layers of the architecture and mutually influencing each other via top-down and
bottom-up signals [20]. Here, prediction dynamics can elicit representations of future affordan-
ces and engender a competition at higher layers between action courses yielding different distal
outcomes (berry versus apple), which in turn continuously biases in a top-down manner the
competition occurring at lower layers between proximal actions (pick the berry versus walking);
for example, by setting a ‘reachable apple’ subgoal as a desirable set point for the lower layer.

However, the competition at lower layers is part and parcel of the decision process and can feed
back on the competition at higher layers. For example, despite the initial top-down bias,
situational constraints might cause the lower layer competition to be won by a lower cost
motor plan for picking the berry (e.g., if the monkey is fatigued or the tree branch is too wet). This
creates a mismatch between two hierarchical levels: the affordance expected by the higher layer
plan is not produced by the berry picking action selected by the lower layer. If the hierarchical
architecture represents the outcomes of these plans (say) as density functions over animal/hand
locations, their mismatch propagates bottom-up in the hierarchy as a feedback (or prediction
error) signal and can eventually cause a revision of the apple reaching plan. This implies that
ultimately a decision is not computed centrally but in a distributed manner [20].

More generally, the purposive aspect of the ‘affordance navigation’ process lies in the fact that
an intentional agent is not limited to (reactively) pick up one of the currently available
affordances, but can also (intentionally) create or destroy affordances, which can then be
exploited to execute successive actions that ultimately achieve long-term goals. For example,
for a climber, the right way to grasp a climbing hold is the one that is functional to reach the
next hold in the sequence (and ultimately the top of the climbing route), thus the former
movements serve to create affordances for the latter movements. This ‘affordance navigation’
emerges from a continuous climber–wall interaction, but it can be also – at least partially –

planned before starting the climb, which requires the climber to predict (sequences of)
affordances that are not yet available but can be created, in a similar way as the apple
reaching plan in the previous example [24]. This process has to take into consideration
situated and embodied aspects of the problem (e.g., body strength, limb length, fatigue,
configuration of the climbing holds), epitomizing the kind of embodied decisions that animal
continuously face in their daily activities [19,25].

Action Control within a Hierarchy of Control Loops
Intentional affordance navigation requires behavioral flexibility. For example, a boxer who wants
to hit an opponent often needs to first move toward him to make the ‘hittability’ affordance
available; but sometimes, when he is too close to the opponent, needs to move backward for the
same purpose. This illustrates a hallmark of control theories [4]: what the control loop strives to
keep stable is the controlled variable – here, the body scaled boxer–opponent distance, which in
turn determines the ‘hittability’ affordance – while the action required to achieve this result is

usually refers to sensory information
arriving from the external world, but
could also refer to internal feedback.
Forward model: a component of
control systems that serves to predict
the next state based on its current
estimate and the selected action.
Intentional action: action that is
taken to produce some intended
effect, that is, achieve some desirable
goal.
Reflex arc: a neural pathway that
controls a reflex action. As Dewey
noted [5], it should be conceived as
a circular process in which a stimulus
motivates an action as much as an
action produces the next stimulus.
Set point: the desired or target value
for a controlled variable of a system.
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context-dependent (e.g., move forward or backward depending on the boxer–opponent
distance), and is not simply a fixed response [26].

The hierarchical control architecture elucidated earlier has this flexibility. Higher hierarchical
layers encoding more abstract goals (‘land a punch’) propagate top-down the expectations (or
set points or reference signals) for the lower layers, such as for example ‘maintain a given
distance from the opponent’, and in this way constrain the to-be-produced affordances
(‘hittability’) – but, importantly, do not prescribe how the lower layers should produce them
(e.g., by moving forward or backward). Conversely, the success or failure in engendering the
required affordances produces a feedback signal or residual prediction error (e.g., a mismatch
between the expected and actual affordance, which is low if the hittability affordance was
successfully produced and high otherwise) that propagates bottom-up in the hierarchy and
sometimes forces the boxer to revise his strategy.
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Figure 1. Examples of Feedback Control Schemes. (A) Schematic of a simple feedback controller. If the comparator c detects a discrepancy between desired state
(or set point) d and current state s (e.g., between desired and actual car velocity), an action a is triggered (e.g., press brake) that causes changes in the world, which in turn
result in sensory feedback (broken arrow) and influence the state s. This architecture can be replicated hierarchically, when the set point (‘100 kph’) is furnished by a
hierarchically higher level that encodes more abstract goals (e.g., ‘get home soon’). (B) A feedback system augmented with a forward model f that predicts the state that
results from executing the action. In advanced control theoretical schemes, prediction is used, for example, to improve state estimation or to substitute missing (or
delayed) feedback [11]. (C) In active inference, a hierarchy of prediction (black) and prediction error (red) units form a generative model for perception and action [75].
Goals encoded at high hierarchical levels (as prior preferences) generate a cascade of descending predictions (black edges) and ascending prediction errors (red edges)
in various modalities: exteroceptive, proprioceptive, interoceptive. Descending predictions are compared with incoming sensations to generate prediction errors that are
propagated backward. The architecture uses (precision-weighted) top-down and bottom-up dynamics to continuously suppress prediction errors until the external
situation matches the goal – or the goal is revised. Action consists in minimizing (proprioceptive) prediction errors by engaging reflexes; but active inference also
accommodates action plans (Box 2).

Trends in Cognitive Sciences, June 2016, Vol. 20, No. 6 417



What is computed at higher levels is not a complete behavioral plan that is successively
decomposed and executed downstream, but a nested cascade of expectations or reference
signals that prescribe the next affordances to be produced (or directly exploited if already
available), without necessarily specifying the lower level actions to be executed (Box 1). In other
words, the higher levels bias the competition at lower levels but ultimately leave them significant
autonomy in action selection. This implies that nested within a control process there is always a
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Figure 2. Intentional Navigation in an Affordance Landscape. (A) Schematic illustrating how, in ecological contexts, affordances and the choices between them
emerge from the geometry of interactions between the agent and its environment. Broken lines indicate possible paths for the mouse to move between obstacles.
Unbroken curves indicate distributions of potential directions at three moments in time. At (i), the distribution can be averaged into a single central direction – thus there is a
single affordance and no competition. At (ii) the distribution begins to separate, but averaging is still possible. At (iii) the average is no longer viable and a decision must be
made between the two possible choices that emerged: moving to the right or left. (B) A more complex choice situation that involves both proximal and distal outcomes: a
monkey is faced with selecting between reaching for a berry versus walking outward on a tree branch toward an apple. According to hierarchical affordance competition,
this situation maps to a multilevel ‘decision space’, where both proximal actions (pick the berry versus walking) and distal outcomes (berry versus apple) compete, but at
different hierarchical levels of a multilevel feedback controller with prediction linking across levels. (C) The hierarchical affordance competition schematically mapped onto
brain structures. Available affordances are specified along the parietal cortex (blue arrows) and compete in sensorimotor regions (blue circles). The competition is biased
by goals specified in prefrontal cortex on the basis of visual processing in temporal cortex (red arrows) and predicted affordances (purple). Panel A is reproduced with
permission from [19].

418 Trends in Cognitive Sciences, June 2016, Vol. 20, No. 6



continuous competition at the level below, among alternative ways to specify the demands of
higher levels. Ultimately, the selected action can be executed through continuous feedback
control.

The hierarchical feedback control view of behavior and cognition suggests a novel way to look at
brain function and its neural organization. We have discussed how affordances can exist at
multiple levels, including concrete actions that are immediately available (reaching for an object
within range), desirable situations that could be made available through specific actions (being
within reach of something), and high-level goals that satisfy current needs (eating a fruit). If the
brain can represent its environment at these multiple levels, then it can link between them
through prediction of consequences (from current to future, predicted affordances) and top-
down biasing of choices (from plans to achieve distal goals to proximal actions). In the next
section, we briefly discuss how this hierarchical control structure is reflected in the organization
of the mammalian forebrain.

Brain Mechanisms Supporting Hierarchical Affordance Competition
It has been suggested that the expansion of the frontal cortex, especially prominent among
primates, made possible the extension of planning to more abstract and more temporally
extended activity [27]. Our hypothesis revisits this proposal of brain organization, although
within the context of a system of nested feedback control loops.

The architecture for ‘hierarchical affordance competition’ has a multilevel structure, whereby low
level mechanisms for competition among available affordances (e.g., pick the berry or not) are
regulated by a higher level mechanism of competition among predicted states (e.g., the decision
to walk the tree branch to create the reachability affordance for an apple) and expected
outcomes (eat berry or apple) [28]. We propose that this hierarchical ‘decision and action
space’ is reflected in brain physiology (Figure 2C). The lowest level mechanisms consist of
parallel streams within reciprocally interconnected frontal and parietal cortical areas, which
implement the sensorimotor control of different species-specific actions (in the case of primates,
terrestrial and arboreal locomotion, reach-to-grasp actions, feeding behavior, defensive and

Box 1. Functional Role of Top-Down and Bottom-Up Signals in Hierarchical Feedback Control
Architectures

In hierarchical feedback control architectures, top-down and bottom-up signals can convey predictions and prediction
errors, respectively (see Figure 1 in main text). However, the functional interpretation of these signals is different if one
focuses on control or decision-making tasks. In a control task, a top-down signal can be interpreted as a reference value
(or set point) provided by a higher level plan (e.g., for reaching an apple) that constrains the affordance to be produced by
a lower layer action (e.g., being close to the apple, or apple reachability). Conversely, a bottom-up signal reports the
mismatch between this expected reference value and the affordances currently available. Feedback control ensures that
this mismatch or residual prediction error is minimized by selecting an appropriate lower level action (i.e., walk the tree
branch toward the apple). Instead, in a decision-making task, both top-down and bottom-up signals can be con-
ceptualized as biases for the competitions occurring at different hierarchical levels. For example, the expectation of a
long-term benefit associated with eating the apple can exert a top-down bias for the competition between walking a tree
branch versus picking up a berry – operationally, this can be done by setting ‘walkability’ as an (expected) affordance to
be produced by the lower layer competition, thus diminishing the value of the alternative action choices at that level. In a
similar manner, the competition occurring at a given (lower) layer can bias the competition occurring at another (higher)
layer, as it can generate a mismatch with the expected affordance (e.g., when a low cost action for picking up a berry is
selected) that propagates bottom-up as a prediction error that cannot be easily minimized unless the monkey abandons
the plan to reach for the apple. That both top-down and bottom-up signals have a biasing role in decision-making reflects
the fact that ultimately feedback control needs to minimize mismatches (or prediction errors) at all levels. Still, the fact that
some levels can have relatively more importance than others can be captured in these systems using mechanisms of
gain (or precision-based) control, which essentially weigh prediction errors by their relative importance or reliability [76].
This also entails that when biases (or even priors) become strong enough, they can prevent other parts of the system
to effectively contribute to the choice. This is a potential mechanism through which lower layer actions that are
afforded sufficient gain or precision might become routinized and activated automatically by a given situation rather
than by top-down signals [77].
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aggressive behavior, gaze control, etc.) [29–31]. Each of these low level systems resolves
competition between the affordances to which it is sensitive (e.g., walkable branches, reachable
objects, grasp types, gaze targets) within specialized maps of action space [28,32,33]. Further
arbitration between these action types is resolved by closed loops between each cortical region
and the dorsolateral striatum, pallidum, and thalamus [34–36]. Each of these systems also forms
a specific cortico-cerebellar loop that predicts the sensory consequences of specific actions.
The functional topology of specific cortical regions with dedicated cortico-striatal and cortico-
cerebellar loops is recapitulated anteriorly in the frontal lobe: each frontal cortical region
possesses a cortico-striatal and a cortico-cerebellar loop, and each is reciprocally connected
both with its immediate posterior and anterior neighbors [37]. A growing body of neurophysio-
logical studies has shown that the information processed in frontal cortex is increasingly abstract
and domain-independent as one progresses from posterior to anterior frontal cortex [38–41].

Importantly, hierarchical control loops follow a temporal principle of organization, reflecting the
fact that decisions should be made, and actions controlled, at a hierarchy of timescales: from
shorter ones that only affect immediate interactions (e.g., pick a berry versus walk), to longer
ones that have longer-term consequences (e.g., approach apple and reach for it). Actions at
different levels of abstraction [42] are reflected in multiscale brain dynamics and internal models
[43], and predictive dynamics link across them (Box 2). In principle, a hierarchy of cortico-
subcortical loops is well placed to support multiscale brain dynamics, but several aspects of this
idea remain to be assessed empirically (e.g., if and how cortico-cerebellar loops can generate
predictions at multiple timescales). This principle of organization has profound consequences on
the way we conceptualize brain structure and function.

First, brain cortico-subcortical hierarchies do not correspond to a model in which higher levels
specify whole behaviors (e.g., a whole defensive movement) and lower levels decompose it into
subunits (e.g., the component finger, hand, and head movements). Instead, growing evidence
suggests that cortical structures are organized around complex and ethologically relevant

Box 2. Active Inference as a Modern Version of Cybernetic Theory

Active inference is essentially a (Bayesian) predictive coding architecture extended with reflexes [14,37,78]. Predictive
coding was first proposed as a model of visual perception, in which the hierarchical layers are coupled through top-down
and bottom-up signals, encoding predictions and prediction errors, respectively, and weighted by their precision (inverse
variance). Top-down and bottom-up dynamics serve to suppress prediction errors (or free energy [75]); sensory
mismatches at the lowest layer propagate upward and help revise (higher) perceptual hypotheses. In contrast to
predictive coding, active inference can also minimize prediction error by acting: by engaging reflexes that suppress
residual (proprioceptive) errors. For example, if one expects to see a berry but does not see it, not only can he revise the
perceptual hypothesis (‘there is no berry’) but he can also put the berry in front of him or search for the berry by moving the
eyes, until there is no more prediction error.

Active inference implements planning in a way that resembles the idea that distal affordances (e.g., apple reachability) can
influence the competition between proximal actions (picking the berry versus walking) [14]. It uses a hierarchical
generative (forward) model to predict action consequences, and the ensuing ‘value’ of possible action sequences
(plans) by considering – iteratively – whether the distal states they make accessible approximate the goal states (encoded
as prior preferences). These plan values enable the selection of immediate actions: the greater the plan's value, the more
likely it is to specify the next action.

As these examples illustrate, active inference can be considered a biologically grounded synthesis of cybernetic ideas (on
homeostasis and control) and the Bayesian brain hypothesis. This might seem odd – because cybernetic theory often
dispenses with an ‘inner model’, while according to the Bayesian brain hypothesis, the brain is a statistical machine that
learns world models. However, in active inference the necessity of models stems from control principles (e.g., the ‘good
regulator theorem’ that the best regulator requires a model [79]). Furthermore, there is an essential contribution of the
body and environment in structuring the content of generative models, because it needs to embody the structure of
sensorimotor interactions. Although the representational aspects of active inference seem odd to ‘radical’ embodied
theories, it is possible that within this scheme one can understand how representational abilities emerge that are relevant
for interactive behavior [49,80].
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movements – ethological action maps [29,31,44] – which group somatotopically the animal's
behavioral repertoire (e.g., hand, mouth, and eye movements that collectively realize a feeding
movement in one part of the motor cortex, and those that collectively realize a climbing
movement in another part). These maps may be reiterated at multiple hierarchical layers. For
example, the more abstract anterior cortical regions (with their associated subcortical loops) may
be organized by ethologically relevant goals such as exploiting available goods, exploring the
environment, and avoiding threats [45]. This perspective leads one to speculate that the
functional roles of specific regions of prefrontal cortex may not be defined by specific compu-
tational tasks (e.g., a general working memory), but by the needs of specific behavioral strategies
(e.g., maintaining a link between the action of walking and the predicted consequence of making
the apple reachable).

Second, this view is incompatible with the widespread distinction between eminently cognitive or
executive areas (e.g., prefrontal cortex), where the decision happens, and movement control
areas (e.g., motor cortex) as the ‘slave systems’ that execute these decisions. Here, instead,
different brain areas process in parallel various aspects of a decision. Not only (higher) decisions
about action plans can bias immediate action selection (where action is not just the next
movement), the result of a competition between affordances at any (low) point of the hierarchy
can influence the choice at (higher) hierarchical levels, by creating a residual prediction error that
cannot be minimized without changing a long-term plan. This architecture is configured for
embodied decisions – the hallmark of adaptive behavior – in which situated aspects of the choice
(e.g., affordances, motor costs scaled by the current fatigue level of the animal, physical distance
from potential targets) must be part and parcel of the decision. Situational aspects of decisions
may be continuously processed in ‘lower’ cortico-subcortical loops (involving sensorimotor brain
areas), which are engaged in the decision process through reciprocal top-down and bottom-up
exchanges with ‘higher’ cortico-subcortical loops.

Third, in this perspective all behavior is controlled toward specific goals (while leaving place for
routinized behavior [37]) – contrary to the idea of specialized computational mechanisms for
‘executive’ or ‘cognitive control’ that can supersede default mechanisms of stimulus–response
[46]. All processes engendered by lower or higher cortico-subcortical loops are controlled, and
the main difference among them is a temporal one – that is, at higher levels, courses of actions
are selected that last (and are controlled/monitored) for prolonged periods. The reason why
executive functions are usually associated to prefrontal cortex might not be that they require
separate computations, as commonly assumed, but that prefrontal cortex-based control loops
last longer. While ‘executive’ (e.g., monitoring, inhibition) aspects of action control might be
ubiquitous across the hierarchy, it might be that they become more apparent (or can be
measured more effectively) only on the longer timescales of anterior prefrontal cortex-based
control loops.

Fourth, this view suggests that higher cognitive processes do not need a separate neural substrate
but might largely reuse the neuronal resources and computations of situated control, yet in an
‘internally generated’ or detached mode. At least since Piaget [47] it has been argued that cognitive
operations can be based on an ‘internalized’, covert (or off-line) reuse of the brain mechanisms
supporting overt sensorimotor loops [48–51]. In turn, these might be largely based on internally
generated (not stimulus-bound) brain dynamics that use the same internal generative models and
feedback processes, but when part of the feedback is self-generated and mediated by covert
internal modeling dynamics (e.g., through cerebellar loops [52–54]) rather than overt sensorimotor
engagement. Consider, for example, motor simulation processes in action prediction [55] or – in a
different context – hippocampal ‘replays’ of (time-compressed) spatial trajectories, which are
implied in navigational planning and memory consolidation [56–58]. These are all examples in
which resources used in situated interaction can be temporarily disengaged from the demands of
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action control and reused for cognitive operations [48,49]. In this perspective, higher cognitive
abilities might depend on a balance between covert and overt processes using largely the same
resources. Internally generated brain dynamics, which operate faster than the action–perception
loop, might permit cognitive operations such as planning, deliberation, and means-ends reasoning
to be ahead of time and provide them the necessary autonomy (detachment) from the current
situated context of the animal. At the same time, these covert operations can be put into practice (to
support situated action) by re-engaging brain dynamics operating at the appropriate timescale for
action–perception loops [37,56,59].

Finally, ‘thinking’ might be conceptualized as a controlled process of prediction and imagination
(of action possibilities and their outcomes), which engages covertly the same resources as overt
interaction [7,60], rather than stemming from specialized computational procedures indepen-
dent of perception and action systems [1,61]. As an example of a ‘controlled imagination’
process, an interior designer can compare, in the mind, different possible arrangements of the
furniture in a room by considering their shape, color, and size, anticipate if the clients will be
satisfied or not, and keep changing (controlling) the imagined arrangements until the desired goal
is achieved (the desired design of the room). Although the designer's thought processes are
temporarily detached from the overt sensorimotor loop, they might use the same mechanisms of
feedback control and forward modeling. An empirical prediction of this ‘embodied intelligence’
view is that even in seemingly abstract thinking processes one might find the signature of
situated and embodied action and, in some cases, residual aspects of overt movements.

Concluding Remarks
The architectures for hierarchical feedback control of our evolutionary ancestors were arguably
well configured to solve problems of situated choice and adaptive control. While psychological
thought has long assumed that complex human behavior demands a different brain architecture,
we argue that neurophysiological and neuroanatomical data motivate us to abandon that
assumption. Rather, the basic design principles of our ancestors’ brains are largely conserved
[62]; and higher cognition abilities such as planning, cognitive control, and thinking, traditionally
considered to require specialized neural and computational resources, appear to be elabo-
rations of the same basic control loops that underlie sensorimotor behavior. For example, forms
of planning may imply a covert replay of actual experience [7,38,48,57,63]. Thus, we propose
that concepts of feedback control, which underlie all biological systems, also provide a viable
conceptual foundation to understand general human cognition – from the control of movement
to the control of internal processes, such as planning, thinking, or attention [7,53,64]. Although
such proposals have been made for more than a century, often resurfacing as in recent
embodied approaches to cognition [65–67], what they often lack are detailed process models
that link feedback control and specific brain computations, especially for higher cognition.

In this opinion article, we have contributed toward filling this gap by proposing how principles of
hierarchical feedback control might apply beyond sensorimotor behavior, exploiting prediction
dynamics to address the realm of intentional action and ‘navigation in an affordance landscape’.
Furthermore, we briefly discussed how these nested control hierarchies might be implemented
in specific neural structures. We proposed that forward simulations can link proximal actions and
distal goals by predicting future affordances that are used as (sub)goal states. In other words,
living organisms can ‘recognize’ affordances that are not there, but can be created, as in the
example of the ‘reachable’ apple, or of a climber planning the best sequence of holds to climb a
wall. Clearly, living organisms dwelling in realistic scenarios confront a combinatorial explosion
and cannot simulate or search through all future possibilities. Computational approaches to this
problem usually adopt some sort of (learned) internal model and/or intermediate state values to
guide the search; and some of them begin to be able to address large problem spaces, for
example, Monte Carlo tree search [68,69]. Similarly, some forms of ‘cognitive search’ may use

Outstanding Questions
Neuroscience has inherited a taxon-
omy of brain functions from cognitive
psychology (distinguishing, e.g., atten-
tion, memory, decision-making, action
control). Should we instead decom-
pose brain function according to the
various mechanisms of feedback con-
trol (e.g., reference point, comparator,
feedback signal, internal model)?

If cognitive skills are sophistications of
control mechanisms originally devel-
oped for situated action (without major
evolutionary changes in brain organiza-
tion), then what are the behavioral tasks
one should study in the laboratory to
gain insights into the mechanisms our
brain uses to solve ecologically valid
problems?

We discussed ethological action maps
in motor and premotor areas. Is the
same functional organization recapitu-
lated at higher hierarchical layers? For
example, is the prefrontal cortex orga-
nized in terms of maps of action-to-
state (e.g., move to be near something,
open door to make it passable)?

Affordance competition is organized
around ‘action specification’ and ‘action
selection’ circuits. Is this general archi-
tecture recapitulated several times in the
brain, toward more abstract categories
of ‘action’ as one proceeds forward
from motor to frontal areas?

What are the hierarchies most useful for
hierarchical control? In theories of
visual processing, hierarchies are often
ones between parts and wholes. Does
this apply to control hierarchies? For
example, a higher level control loop
may be more extended in time, but
not necessarily be any less concrete
than a lower level control loop.

Does the idea of ‘navigating the afford-
ance landscape’ apply to social behav-
ior? Can the actions of others be
conceived as social affordances?
Can social interaction and communica-
tion be conceptualized in terms of feed-
back control – for example, we control
the behavior of others to achieve our
(individualistic or joint) goals?
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model-based methods. Whether this is true and what specific forms of internal models and
model-based search biological organisms adopt are important research objectives, which
require a tight collaboration between empirical and computational methods. For example, it
has been proposed that sophisticated forms of prospective cognition may require specific
adaptations in primates associated with the appearance of granular prefrontal cortex [45], and
computational studies may help to elucidate the underlying computational principles [41,70].

The emerging view is that adaptive action control – and the problems faced by situated agents
who pursue their goals in dynamic (yet structured) environments – should be considered as a
central paradigm to understand human cognition. Methodologically, this suggests designing
experiments that reflect conditions that are as ecologically valid as possible, as opposed to
conditions designed to face subjects with problems that do not capture the fundamental
challenges to which the brain has adapted [71]. Furthermore, using principles of feedback
control as metaphors (or better still, as implemented computational systems) for experimental
design might help to address the numerous research questions that remain open (see Out-
standing Questions) and arguably lead to a much-improved view of human cognition.
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